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The unwanted sensitivity of a plate pyroelectric detector to airborne acoustic noise is
depends critically on the mounting conditions for the plate. We consider a plate in an
isotropic acoustic pressure field oscillating at angular frequency ωd. We analyze the
situation in terms of a mechanically isotropic material, and show that for one type of
boundary conditions, the so-called clamped-boundary conditions, the strain-induced
time-varying surface charges caused by the pressure in various regions of the plate,
completely cancel out. This suggests that significantly reduced noise sensitivity of a
practical free-standing pyroelectric detector can be achieved by paying careful attention
to the mounting conditions. We also derive the strains for the case of the trigonal 3m
class within the framework developed for the thin-plate approximation, and show that
the result is unchanged. This has implications for the design of pyroelectric detectors
based on a stiff material such as LiTaO3.
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Background

The study of pyroelectric detectors provides a unique challenge because the electrical,
mechanical, and thermal properties are coupled to each other [1]. Knowledge of the ther-
mal behaviour of a pyroelectric detector has directed us to building detectors that are
thermally isolated (hence, freestanding) and as thin as possible for a given area [2]. The
constraints that lead to greater thermal sensitivity, unfortunately, lead to undesirable trade-
offs such as greater susceptibility to ambient acoustic noise [3]. Therefore we have de-
rived a means of calculating a contribution to noise voltage from a freestanding pyro-
electric disk. This includes piezoelectric noise generated by ambient acoustically excited
flexural vibration, which can dominate all other noise sources-even in a quiet laboratory
environment.

The present work presents analysis that advances our understanding of the behaviour of
ferroelectric materials and pyroelectric detectors, and provides engineering tools for future
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development. We do not present experimental results in detail here, but rather investigate
by approximate analytical methods the origins and possible methods of amelioration of
this important effect. Our analysis is directed towards flexural acoustic modes in the low
kilohertz range where ambient air-borne acoustic noise will be efficiently coupled to the
detector plate.

In the past we have experimentally investigated the effects of ferroelectric domain
reversal [4]. Using this technique, the induced surface charge in response to an acoustically
induced strain may be caused to change sign. Correct balancing of natural and domain-
inverted regions gives us another tool with which to reduce the sensitivity to acoustic noise
without resorting to the mounting of the detector on a rigid substrate. Our analysis provides
an objective basis for evaluating past and future experimental endeavours.

With knowledge of the sound pressure and the mechanical and material properties of the
plate, we have first to calculate the plate deformation as a function of the plate geometry and
thickness. From knowledge of the plate displacement, we quantify the strain as a function
of position, which is necessary to calculate the electric displacement and surface charge
density. The total charge generated by flexure is then obtained by integrating the surface
charge density over the area of the detector covered by the electrode.

Introduction

The results of this paper are derived first for a plate of isotropic material, within the thin plate
approximation (that is, plate thicknes � acoustic wavelength). It is of course possible to
construct a plate pyroelectric detector out of such material, and the results of this paper apply
provided the thin plate condition is satisfied, which will always be the case with practical
devices. To be conservative, and because there is a measure of ambiguity in formulating
Poisson’s ratio, we generalise the thin-plate approximation to the 3m case, starting from
first principles, and find that the results are valid. We assert that a z-cut plate of 3m material,
for example LiTaO3, can be described with accuracy sufficient that the results of this paper
are applicable. Later in this paper we present the strains in a thin plate of z-cut 3m material
in terms of the z-directed displacement field ζ (x, y) and the elastic coefficients, defining
along the way the quantities λ = c14/c44 and µ = c13/c33. The transition from the 3m case
(6 independent stiffness coefficients: c11, c12, c13, c14, c33, c44) case to the lower-symmetry
isotropic case (2 independent stiffness coefficients: c11, c12) is accomplished by letting
c14 → 0, c33 → c11, c13 → c12, and c44 → (c11 − c12)/2, implying that λ → 0 and
µ → c12/c11 = ν/(1 − ν), where ν is Poisson’s ratio.

The damped wave equation for a thin isotropic plate has the form

c4∇4u + 2γ
∂u

∂t
+ ∂2u

∂t2
= Z (r, t), (1)

where

c4 = Eh2

3ρ(1 − ν2)
, (2)

γ is the magnitude of damping, u is the plate displacement, E is the modulus of elasticity
(or Young’s modulus for an isotropic plate), 2h is the plate thickness, ρ is the density of the
plate material, t is time, and Z is the magnitude of the driving oscillator proportional to the
sound pressure.
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It is possible to solve Eq. (1) by expanding the amplitude u and the driving term Z in
terms of the eigenfunctions of the associated undamped, undriven wave equation, which is

c4∇4uN
n − ω2

nuN
n = 0, (3)

where ωn is the angular frequency of the nth eigenmode. The general displacement may be
expanded as

u(r, t) =
∑
n,n′

an,n′(t)uN
n,n′(r). (4)

The expansion of the driving term on the right side of Eq. (1) is

Z =
∑
m,m ′

bm,m ′(t)uN
m,m ′(r)eiωd t , (5)

where r is a transverse vector in the plane of the plate. We assume a deterministic and
harmonic driving term for the present analysis. In order to solve Eq. (3), the physical
manifestation of the plate boundary conditions, that is, clamped, simply supported, or some
other variation, must be established at this stage. For the case of a circular disk with radius
r = a clamped about its perimeter, we require

un(a, θ ) = 0, (6)

and

∂un(a, θ )

∂r
= 0, (7)

which is the mathematical representation of the clamped boundary conditions. The eigen-
value equation is now

Jn(ka)

In(ka)
+ J ′

n(ka)

I ′
n(ka)

= 0, (8)

where In, I ′
n and Jn, J ′

n are Bessel functions. If we denote the mth root of Eq. (8) by Zm,n ,
then

zm,n = km,na, (9)

and the normalised eigenfunctions are of the form

uN
n,m(r, θ ) = un,m cos nθ

{
Jn

(
zmr

a

)
− Jn(zm)

In(zm)
In

(
zmr

a

)}
. (10)

Equation (10) is valid even if the boundary conditions are altered. If they are altered,
then the eigenvalue equation described by Eq. (9) will no longer apply. Classically there are
two extreme cases of boundary conditions for the vibrating plate: perfectly clamped, and
simply supported. These two conditions are illustrated in cross section in Fig. 1 (a) and (b).
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FIGURE 1 Two idealized plate boundary conditions in the context of physical mounting
and deformation: (a) clamped; (b) simply supported.

The Boundary Conditions—A Brief Discussion

It is not obvious that the flexural displacement of a ferroelectric plate that is clamped by
peripheral rings obeys either the clamped (Fig. 1(a)) or the simply supported (Fig. 1(b))
boundary condition, because the displacements near the perimeter are small (of the order
of nanometers or less). This difference is more readily indicated by resonant frequencies
predicted by Eq. (8) for the clamped condition and those for the solutions of the eigen-
value equation appropriate to the simply supported case. It is useful to have some theory
of the boundary conditions in which a parameter is used to describe a smooth interpo-
lation between the two cases (a) and (b) of Fig. 1. Kantham [5] has described such a
generalization of the situation, where a single parameter allows the boundary conditions to
smoothly evolve between these extreme cases, the free plate being irrelevant in this present
discussion.

Kantham [5] defines an additional boundary condition expression for an elastically
restrained plate following Timoshenko [6]: α = βM , where α is the slope at the plate
perimeter, M is the turning moment per unit length at the plate perimeter, and β is the
elastic restraint factor. The elastic boundary condition may be written within Kantham’s
generalization as (

∂u

∂r

)
r=a

= −β Riso

{
∂2u

∂r2
+ ν

r

∂u

∂r

}
r=a

, (11)

where the modulus of rigidity Riso is given in the isotropic case by

Riso = c4ρ2h (12)

and the M , turning moment per unit length of perimeter, is given by Riso multiplied by the
term in curly brackets on the right hand side of Eq. (11). The eigenvalue equation now has
the form [7] of

−
{

Jn+1(zna)

Jn(zna)
+ In+1(zna)

In(zna)

}(
1 − β Riso

a
(1 − ν)

)
= 2

β Riso

a
(zna), (13)

the limits of which are bounded between the simply supported case, β → ∞, where there
is no resistance to the turning moment, and the perfectly clamped case, β → 0, where
a very large turning moment is needed to produce even the smallest radial gradient near
the perimeter. Equation (11) or alternatively, Eq. (13), reduces to Eq. (8) for the perfectly
clamped case. For the simply supported case, imposing the condition β → ∞ ensures
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that additionally, the term in the curly brackets on the right of Eq. (11) must be zero. The
simultaneous vanishing of the radial gradient at the boundary and the right hand side of
Eq. (11) are the required conditions for the simply supported case.

It is important to note that Eq. (13) can be generalized to apply to the lower symmetry
3m case appropriate to a LiTaO3 plate. The resulting equation is similar to Eq. (13) but the
constant Riso is replaced by a more complicated combination of the stiffness coefficients.

If the plate comprising the pyroelectric detector is set in oscillation by means of ambi-
ent acoustic vibration, then it is interesting to consider how the spurious piezoelectrically
generated noise depends on the boundary conditions. If one takes a snapshot in time of the
vibrating plate, then for symmetrical (that is, θ -independent) vibrations, one finds that there
is a radius where the piezoelectrically induced surface charge changes polarity (assuming
that the electrodes have negligible mass and cover each face entirely). This radius depends
critically on the boundary conditions of the plate. What is surprising is that if the boundary
conditions can be controlled so that the plate is effectively clamped, the quantities of posi-
tive and negative surface charge balance. This indicates that if one could mount the detector
plate so that the clamped boundary conditions were obeyed, a great reduction (theoretically
complete elimination) of sensitivity to ambient acoustic noise would be achieved. The only
requirement for cancellation is that uN

n,m(a, θ ) = 0, that is, that the displacement vanishes
at r = a. Thus we can interpret Eq. (10) as the correct form for the displacement of any
mode on the disk, provided that we get the value of zm from the correct boundary-value
equation. Furthermore, if the boundary conditions (not perfectly clamped) are predictable,
in principle one could use ferroelectric domain engineering4 to balance out the effects and
arrive at a situation where the net charge collected by the surface electrode is zero.

We consider the excitation of the plate by means of ambient sound; take for simplicity
the case where a single frequency excitation is occurring. The sound field is isotropic and
wavelengths are long compared to typical detector dimensions, so from here on we take
n = 0 to correspond with the assumption that there is no angular dependence in the ambient
sound field. The normalized functions now

uN
0,m(r, θ ) = u0,m

{
Jn

(
zmr

a

)
− Jn(zm)

In(zm)
In

(
zmr

a

)}
(14)

and

u0,m = 1√
2πa J0(zm)

. (15)

Displacement, Strain, and Charge Cancellation

The general displacement equation is

u(r, t) =
∞∑

n=1

an(t)uN
n (r ), (16)

where

uN
n (r ) = 1

a
√

2π




J0

(
znr

a

)
J0(zn)

−
I0

(
znr

a

)
I0(zn)


 , (17)
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where zn is the nth root of the appropriate eigenvalue equation. Thus

bn =
(

P

2hρ

)√
8πa

zn

J1(zn)

J0(zn)
, (18)

where P is the peak air pressure, ρ is the plate density, 2h is the plate thickness, ωd is the
driving frequency of the sound pressure, and the resonant frequencies ωn are given by

c4 = Eh2

3ρ(1 − σ 2)
, (19)

zn = kna, (20)

and

ωn = z2
n

h

a2

√(
E

3ρ(1 − ν2)

)
. (21)

From Landau and Lifshitz [8] the nonzero strains written in terms of the z-directed
displacement field ζ (x, y) = u(x, y, z = 0) are

S1 = −zζ,xx

S2 = −zζ,yy
(22)

S3 = ν

1 − ν
z(ζ,xx + ζ,yy)

S6 = −zζ,xy.

The strains in Eq. (22) are written in shorthand notation for the second partial derivatives;
for example, ζ,xx = ∂2ζ (r )/∂x2, where the radial coordinate r is in a plane defined by
orthogonal coordinates x and y. We want to determine the electric displacement vector, Di

and hence the displacement current within the framework of the thin-plate approximation.
The appropriate piezoelectric constitutive equation is

Di = εE
i j E j − ei I SI , (23)

where εE
i j is the constant-field permittivity, E j is the electric field vector, ei I is the piezo-

electric stress, and SI is the strain (this expression combines tensor and matrix notation for
brevity [9]). In the present case, we consider the output of the pyroelectric to be connected
into a low-impedance amplifier. Therefore we may consider the electric field to be zero
throughout the thickness of the plate and the instantaneous voltage V = (2h)(E3) = 0 is
valid within the thin plate approximation and, again, within the framework of the thin-plate
model.

We concern ourselves only with the z-direction component of the electric displacement
in order to determine the surface charge density, so expanding, Eq. (23) and combining terms
gives

D3 = e31(S1 + S2) + e33S3. (24)
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FIGURE 2 Calculated surface-charge density for a clamped freestanding circular plate.

Further expansion in terms of the actual displacement values as shown in Eq. (22) yields

D3 = z

[
∂2ζ (r )

∂x2
+ ∂2ζ (r )

∂y2

][
ν

1 − ν
e33 − e31

]
. (25)

Thus at the surface of the disk, the instantaneous surface charge is

σs = h

1 − ν

[
∂2ζ (r )

∂x2
+ ∂2ζ (r )

∂y2

]
[ν(e33 + e31) − e31], (26)

with a corresponding negative value on the lower surface. A normalized plot of the instan-
taneous surface charge in Eq. (26) is shown in Fig. 2. Note that Eq. (26) now has the form
of a divergence multiplied by a constant, or

σs = ∇2ζ (r ) × K , (27)

where K is a constant. In order to determine the total current generated by the disk, it is
necessary to integrate the charge over the electrode area (for the present we assume the
electrodes completely cover each face of the detector). Gauss’s theorem transforms the
divergence by ∫

disk area

∇2 f (r )d A =
∮

disk perimeter

[∇ f (r )] · n̂d�, (28)

where

∇ ≡ r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
≡ r̂

∂

∂r
, (29)

and so we can express the instantaneous surface charge in terms of the instantaneous gradient
at the perimeter. From Eq. (29), in the case of clamped boundary conditions both the radial
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and angular derivatives of displacement tend to zero, and so the net instantaneous charge
on the circular plate is zero. We now show that this key result holds not only for materials
of the less symmetric 6 mm crystal class but also for 3m-class materials, again all within
the framework of the thin-plate approximation.

Anisotropy and the Treatment of the 3m Crystal Class

As shown before, for the isotropic case, we find that D3 is proportional to a divergence. An
analysis of the free energy of a strained 3m thin plate (electrodes covering the z-faces and
electrically short circuited) whose neutral surface intitially coincides with the z = 0 plane,
shows that the strains can be expressed in terms of the displacement of the neutral surface
ζ (x, y) as follows:

S1 = −zζ,xx ;

S2 = −zζ,yy;

S3 = µz(ζ,xx + ζ,yy); (30)

S4 = λz(ζ,xx − ζ,yy);

S5 = 2λz(ζ,xy);

S6 = −2z(ζ,xy).

For convenience we have defined

λ = c14

c44
; µ = c13

c33
. (31)

To compare, we refer to the isotropic case described by Eq. (22), where only four of the six
possible strains are nonzero.

Applying again the piezoelectric stress tensor appropriate to the 3m class of crystals
(in matrix notation) and the simplified constitutive relation (23) for electric displacement
to find the component of Di normal to the z-plane,

D3 = e31(S1 + S2) + e33S3. (32)

No other components of the strain or piezoelectric tensor are involved. Expanding Eq. (32)
by use of Eq. (30),

D3 = (e33µ − e31)z{u,xx + u,yy}. (33)

From Eq. (32) the charge density on the plate at the surface (at h) is

σs(x, y, h) = h(µe33 − e31){u,xx (x, y) + u,yy(x, y)}. (34)

Note that the c14 elastic component does not appear in the expressions for strains S1S2 and
S3 in Eq. (31) and so the “extra” strains S4 and S5, which appear in the 3m but not the 6 mm
class of materials, do not affect D3 as given by Eq. (33). The latter equation is therefore
valid for both the hexagonal 6 mm class of (transversely isotropic) materials and the trigonal
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3m class of lower symmetry. The instantaneous charge on the flexing piezoelectric plate is
given by integrating the surface charge of the plate area A so that

Q =
∫ ∫

σs(x, y, h)d A. (35)

The displacement current density j is given by the partial derivative of the electric displace-
ment with respect to time. Therefore the displacement current density is

j3(x, y, h) = h(µe33 − e31){u̇,xx (x, y) + u̇,yy(x, y)}. (36)

The time dependence of u is eiωdt , so

j3(x, y, h) = h(iωd)(µe33 = e31){u,xx (x, y) + u,yy(x, y)}. (37)

The total current generated i3(t) is obtained by integrating Eq. (37) over the area of the face
of the disk, or

i3(t) = h(iωd)(µe33 − e31)
∫ ∫

disk area

∇2u(x, y)dA, (38)

and using Gauss’s theorem,

i3(t) = h(iωd)(µe33 − e31)
∮

disk
perimeter

[
∂u(x, y)

∂r

]
r=a

d�. (39)

In all cases we must use the appropriate eigenvalue equation to find zn . If zn is the solution
to the clamped eigenvalue equation, the radial gradient ∂u/∂r at r = a will vanish and
so therefore will the acoustically generated noise current, according to Eq. (39). Following
Kantham’s treatment of the elastic boundary condition, ∂u/∂r at r = a will not vanish
for any other boundary condition (that is, any value of β other than zero) and so the
instantaneous noise current i3 will be proportional to the instantaneous radial gradient of
the plate displacement, evaluated at the perimeter.

Finally, consider the θ -dependent case within the framework of the thin-plate approx-
imation and in the context of Kantham’s generalised boundary conditions. The question
remains, if the theta-dependent flexural modes are in fact excited by the ambient acoustic
field, will any of this theory still be valid? If we replace f (r ) in Eq. (28) by the most general
form of solution f (r ) cos(mθ ), we see that the theta part is irrelevant according to Eq. (29),
n ·θ̂ = 0, and the amount of noise current is still determined by the radial gradient only. Thus,
even if theta-dependent modes are excited, imposing the clamped-boundary conditions at
r = a will ensure that the noise current is zero.

Conclusions

We have presented a simple analytical model of a free-standing pyroelectric detector of
circular boundary and argued that within the framework of the thin-plate approximation,
the spurious acoustic noise generated through the piezoelectric effect by exposure to ambient
acoustic noise depends critically on the exact nature of the clamping conditions of the plate,
and becomes small (actually vanishes in our model) when the idealized clamped-boundary
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conditions are imposed, forcing the radial gradient of the plate displacement to zero at all
times on the boundary. Our model assumes for simplicity a deterministic acoustic signal;
a statistical treatment based on some assumed ambient noise power spectral density is
expected to yield broadly the same interesting result but at the cost of greatly increased
complexity. From this analysis we can assert that charge cancellation appears for the less-
symmetric 3m case as it does for the nearly isotropic case.
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